PhysicsAnd	dMaths]	utor.com				
Please check the examination deta				didate inforn	nation	
Candidate surname Other			Other name	es		
Pearson Edexcel International Advanced Level	Centre	Number		Candidate	e Number	
Sample Assessment Materials for first teaching September 2018						
(Time: 1 hour 30 minutes) Paper Reference WFM02/01						
Mathematics International Advanced Subsidiary/Advanced Level Further Pure Mathematics FP2						
You must have: Mathematical Formulae and Statistical Tables, calculator			cs			

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 8 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

\$59763A ©2018 Pearson Education Ltd.

Leave blank

Answer ALL questions. Write your answers in the spaces provided.

1. Using algebra, find the set of values of x for which

$$\frac{x}{x+2} < \frac{2}{x+5}$$

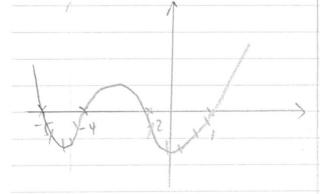
(7)

 $x(\chi+5)^{2}(\chi+2) \leq 2(\chi+5)(\chi+2)^{2}$

 $x(xt)^{2}(x+2) - 2(xt)(x+2)^{2} \angle 0$

(x+5)(x+2) (x2+3x-4)60

(x+5) (x+2) (x+4)(n-1)60



-5 L x L-4 and -2 Lx (1

2. (a) Express
$$\frac{1}{(r+6)(r+8)}$$
 in partial fractions.

(b) Hence show that

$$\sum_{r=1}^{n} \frac{2}{(r+6)(r+8)} = \frac{n(an+b)}{56(n+7)(n+8)}$$

where a and b are integers to be found.

(4)

(1)

let r=1 1 -1/7
r=2 1 - 1/8
r=3 $1/-14$
4 11
$r=n-1=\frac{1}{n+5}-1$
r=n $n+6$ $n+8$
1 +1 -1 -1 7 8 n+7 n+8.
8(n+7)(n+8) +7(n+7)(n+8) -56(n+8

$$= \frac{15n^2 + 113n}{56(n+7)(n+6)}$$

3. (a) Show that the substitution $z = y^{-2}$ transforms the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = x\mathrm{e}^{-x^2}y^3 \quad (\mathrm{I})$$

into the differential equation

$$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} \quad (\mathrm{II})$$

(b) Solve differential equation (II) to find z as a function of x.

(5)

(c) Hence find the general solution of differential equation (I), giving your answer in the form $y^2 = f(x)$.

(1)

$\frac{z}{y_2} = \frac{1}{y^2} = \frac{1}{z}$	(f.7 =) (f. Q d x + (.
2ydy 1 dz 7x 72 dx,	$e^{-2x^{2}}$ $e^{-2x^{2}}$ $e^{-2x^{2}}$ $e^{-2x^{2}}$
Multiplying the original equiposes	e 2x2 e 7=1e-3x2 7=1e-3x2
2ydy + 4cy 2 21 = 2y4 xe-2	
$\frac{2^2 \times -1}{2^2} \cdot \frac{d^2}{d^2} + \frac{4x}{2} = \frac{2}{2^2} \cdot x^{\frac{2}{3}}$	$x^{2}(c)$ $y^{2}=[$ $z=1$ y^{2} .
$\frac{dz}{dx} - 4nz = -2xe^{-x^2}$	$\frac{1}{9^2} = \frac{1}{3}e^{-\chi^2} + (e^{2\chi^2})$
(b) ef e S-4xdx = e	$y^{2} = \frac{1}{3}e^{-x^{2}+(e^{2x^{2}})}$
= e -242 => (f.	

4. A transformation T from the z-plane to the w-plane is given by

$$w = \frac{z-1}{z+1}, \quad z \neq -1$$

The line in the z-plane with equation y = 2x is mapped by T onto the curve C in the w-plane.

(a) Show that C is a circle and find its centre and radius.

(7)

The region y < 2x in the z-plane is mapped by T onto the region R in the w-plane.

(b) Sketch circle C on an Argand diagram and shade and label region R.

(2)

	(2)
W2+w = 2-1	2k = -2v
w 2-2=-w-1	$(4-1)^{2}+V^{2}$
2(w-1)=-1(w+1)	$\frac{24^{2}+2v^{2}-2}{(u-1)^{2}+v^{2}}=-2v$
Z=-1 (w+1)	202+2×2+2v-2=0.
$(\omega - 1)$	42 tv2 tv-1=0.
2 = -(u+iv+1) * ((u-1)-iv) $((u-1)+iv)*((u-1)-iv)$	$4^{2}+\left(\frac{V+1}{2}\right)^{2}-\frac{1}{4}-1=0$
= $-1((y+1)(y-1) - iv(y+1)$ + $iv(y-1) - i^2y^2$].	y2+(v+1)2=5;
7	circle centre (0,-1/2)
=-1[u2-1-iuv-iv+iuv-iv+v2	circle centre $(0,-1/2)$ radius = $\sqrt{5}$.
	(b) \(\frac{1}{2}\)
= -1 + v2 + u? - Ziv	
(u-1) 2+ V2	

x = 42 + 15 - 1

Given that $y = \cot x$,

(a) show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\cot x + 2\cot^3 x \tag{3}$$

(b) Hence show that

$$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = p \cot^4 x + q \cot^2 x + r$$

where p, q and r are integers to be found.

(3)

(c) Find the Taylor series expansion of cot x in ascending powers of $\left(x - \frac{\pi}{3}\right)$ up to and including the term in $\left(x - \frac{\pi}{3}\right)^3$.

(3)

$$y = \frac{\cos x}{\sin^2 x}$$

$$\frac{dy}{\sin^2 x}$$

$$= \frac{\cos x}{\sin^2 x}$$

$$= \frac{2\cos x}{\sin^2 x}$$

$$= \frac{2\cos x}{\sin^2 x}$$

$$= \frac{2\cos x}{\cos^2 x}$$

$$= \frac{2\cos x}{\cos^2 x}$$

$$= \frac{2\cos x}{\cos^2 x}$$

$$= -\frac{2\cos x}{\sin^2 x}$$

$$= -\frac{2\cos x}{\sin^2 x}$$

$$= -\frac{2\cos x}{\sin^2 x}$$

$$= \frac{2\cos x}{\sin^2 x}$$

$$= \frac{2\sin^2 x - 2\sin x}{\sin^2 x}$$

$$= \frac{2\sin^2 x - 2\sin^2 x}{\sin^2 x}$$

$$= \frac{2\sin^2 x}{\sin^2 x}$$

$$= \frac{2\cos^2 x}{\sin^2 x}$$

Question 5 continued
= - 2cosec2x -6cot2x.cosec2x
-2 (1t(0t2x)-6(0t2x(1t(0t2x)
=-2-2cot2x-6cot3e+6cot4x
=-80t2x-600t4x-2.
(e) $a = T/3$.
$f(x)=\cot x$
$f'(x) = -1$ $Sin^2 x$
f"(x)= 2(of 2 + 2(ot 3x
$f'''(x) = -6 \cot^4 x - 8 \cot^2 x - 2$
$f(\overline{Y}_3) = \frac{\zeta_3}{J}$
$f'(W_3) = -4/3$
f"(\mathbb{P}_3)=8\land 3
f''' (\forall 3) = -16.
$f(x) = \frac{\sqrt{3}}{3} - \frac{4}{3}(x - \sqrt{3}) + \frac{8\sqrt{3}(x - \sqrt{3})^2}{9x^2!} - \frac{16}{3x^3!} (x - \sqrt{3})^3 - \frac{1}{3}(x - \frac{\pi}{3}) + \frac{4}{9}\sqrt{3}(x - \frac{\pi}{3})^2 - \frac{8}{9}(x - \frac{\pi}{3})^3$

Leave blank

6. (a) Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 2\sin x \quad (I)$$

Given that y = 0 and $\frac{dy}{dx} = 1$ when x = 0

(b) find the particular solution of differential equation (I).

(5)

CF	-47+2N=2
$m^2 - 2m - 3 = 0$	-4×22×=0
$2^{+}\sqrt{2^{2}-4(-3)}$	$\lambda = -\frac{2}{5} \qquad P = \frac{1}{5}$
m=1 m=3.	: y = Ae x + Be 3x - 2 Sinx + 1 cosx.
Age + Be 3x -> Cf.	(b) 0= Ae 0+Be 0-2(0)+1.
PI	A+B=-1.
y=>sinx+rcosx. dy=>cosx-rsinz. dz	$\frac{dy}{dx} = -Ae^{-x} + 3Be^{3x} - 2\cos x - 1\sin x$
	1=-A+3B-2
dri = - > SINX & - PCOSX	$-A+3B=\frac{7}{5}$
->Sinx - PCOSX	A-1 B-3
+ -3 25in2 -3 × COSX	$y = -\frac{1}{2}e^{-x} + \frac{3}{10}e^{3x} - \frac{2}{5}\sin x + \frac{1}{5}\cos x$
= 5/nx(-4/+2/V) +(05x(-4	(Y-27)

7.

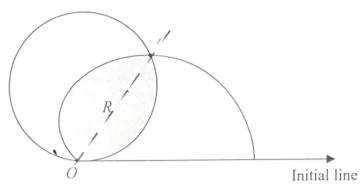


Figure 1

Figure 1 shows the two curves given by the polar equations

$$r = \sqrt{3} \sin \theta$$
, $0 \le \theta \le \pi$
 $r = 1 + \cos \theta$, $0 \le \theta \le \pi$

(a) Verify that the curves intersect at the point P with polar coordinates $\left(\frac{3}{2}, \frac{\pi}{3}\right)$.

The region R, bounded by the two curves, is shown shaded in Figure 1.

(b) Use calculus to find the exact area of R, giving your answer in the form $a(\pi - \sqrt{3})$, where a is a constant to be found.

(a)
$$r = \sqrt{3} \sin \left(\frac{\pi}{3}\right)$$

$$= \frac{3}{2} \int \sin^{2}\theta$$

$$= \frac{3}{2} \int \sin^{2}\theta$$

$$= \frac{3}{2} \int \sin^{2}\theta$$

$$= \frac{3}{2} \int \frac{1 - \cos 2\theta}{2}$$

$$= \frac{3}{2} \int \frac{1 - \cos 2\theta}{2}$$

$$= \frac{3}{4} \int 1 - \cos 2\theta d\theta$$

$$\therefore POI = \left(\frac{3}{2}, \frac{\pi}{3}\right)$$

$$= \frac{3}{4} \left(\theta - \frac{\sin 2\theta}{2}\right) \int_{0}^{\pi/3}$$

$$= \left(\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right) + \frac{3}{4} - 0$$

Question ** continued	Leave
$\frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1 + (0)0)^2 d0$	
$\frac{1}{2}\int_{0}^{\infty} 1+2\cos\theta+\cos^2\theta d\theta$	
$\frac{1}{2}\int_{0}^{1+2\cos\phi+\frac{1}{2}}\int_{0}^{1}\cos^{2\phi+1}$	
$=\frac{1}{2}\left[0+2\sin\theta+\frac{\sin2\theta+1\theta}{4}\right]$	
$= \frac{1}{2} \left[\frac{31}{2} - \left(\frac{11}{2} + \sqrt{3} + \frac{\sqrt{3}}{8} \right) \right] - 2$	
(P) + (D)	
$=\frac{3}{4}\left(\pi-\sqrt{3}\right)$	
V	

(a) Show that

$$\left(z + \frac{1}{z}\right)^3 \left(z - \frac{1}{z}\right)^3 = z^6 - \frac{1}{z^6} - k\left(z^2 - \frac{1}{z^2}\right)$$

where k is a constant to be found.

(3)

Given that $z = \cos \theta + i \sin \theta$, where θ is real,

(b) show that

(i)
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$

(ii)
$$z^n - \frac{1}{z^n} = 2i\sin n\theta$$

(3)

(c) Hence show that

$$\cos^3\theta \sin^3\theta = \frac{1}{32} (3\sin 2\theta - \sin 6\theta)$$
 (4)

(d) Find the exact value of

$$\int_0^{\frac{\pi}{8}} \cos^3 \theta \, \sin^3 \theta \, \mathrm{d}\theta \tag{4}$$

(4)

$$\left(a\right)\left(\frac{2+1}{2}\right)^3\left(\frac{2-1}{2}\right)^3$$

is the same as

$$\left(\frac{2^2-1}{2^2}\right)^{\frac{1}{2}}$$

$$= 2^{6} - 32^{2} + \frac{3}{2^{2}} - 7^{6}$$

$$= 2^{6} - \frac{1}{2^{6}} - 3(t^{2} - 1)$$

PhysicsAndMathsTutor.com		
Question 8 continued	Leave	
(b) $t^n + \frac{1}{t^n}$	-641 9in 30 cos 30 = 2 sin 60	
Z'= cosotisino	-6181/20	
Zh from De Moivre's Theoren	: cos30 sin30 = 1 [3355120 - sin60]	
- (coso tishno)	(d) 5 [#] /8 351020-51060 do.	
= (Osmo tisinho	В	
Z-h= cosno-isinno	$= \frac{-3\cos 20}{2} + \frac{\cos 60}{6} = \frac{7.1}{3.2}$	
- 2h + 2 - 2 cosno asreg		
2n-2-n	$= \frac{1}{32} \left[\left(\frac{-3}{2\sqrt{2}} - \frac{1}{6\sqrt{2}} \right) - \left(\frac{-3}{2} + \frac{1}{6} \right) \right]$	
= cosnotisinno-cosnotini	$=\frac{1}{32}\left(\frac{4}{7}-\frac{5\sqrt{2}}{6}\right)$	
= Zisinno	32(3 6)	
$(c) \left(\frac{2+1}{t}\right)^3 \left(\frac{2-1}{t}\right)^3$		
=(2(050)3 (2181,0)3		
$\frac{z^6-1-3(z^2-1)}{z^6}$		
= 2181168-6181120.		